Square & Cube Roots

Square Roots:

- Positive numbers have two square roots because, both the product of two negatives and two positives is positive.
- For example, $\sqrt{36} = 6$ and -6.
- Negative numbers have no real square roots because, they have imaginary roots, but no real ones.

Perfect Squares:

12= 1•1 = 1	$5^2 = 5 \cdot 5 = 25$
2 ² = 2 • 2 = 4	62= 6 • 6 = 36
32 = 3 • 3 = 9	7 ² = 7 • 7 = 49
42 = 4 • 4 = 16	8 ² = 8 • 8 = 64

Cube Roots:

- Positive numbers have positive cube roots because, an odd number of identical factors produces a product of the same sign as the factors.
- Negative numbers have negative cube roots because, an odd number of identical factors produces a product of the same sign as the factors.

Perfect Cubes:

]3=]•]•]=]	$5^3 = 5 \cdot 5 \cdot 5 = 125$
$2^3 = 2 \cdot 2 \cdot 2 = 8$	63 = 6 • 6 • 6 = 216
$3^3 = 3 \bullet 3 \bullet 3 \bullet = 27$	73 = 7 • 7 • 7 = 343
43 = 4 • 4 • 4 = 64	83 = 8 • 8 • 8 = 512

Simplifying Square Roots:

 $\sqrt{150}$

 $\sqrt{25 \cdot 6}$

- Re-write the radicand as the product of the largest perfect square and another factor.
- Factor out the perfect $\sqrt{25} \cdot \sqrt{6}$ square. $5\sqrt{6}$
- Simplify.

Equations with Roots:

- The inverse of a square is a square root. The inverse of a cube is a cube root.
- Solve equations involving roots by using inverse operations, just as you would with addition, subtraction, etc.

$$x^2 = 25$$

$$\sqrt{x^2} = \sqrt{25}$$

$$x = 5$$